Anaconda、CPython以及更多:关于各Python发行版,我们需要了解的一切 架构&设计

来源:互联网 / 作者:SKY / 2018-04-25 15:01 / 点击:
在本文中,我们将探讨Python语言的各类运行时与发行版选项,并探讨其各自适合哪些用例。

Anaconda、CPython、PyPy以及更多:关于各Python发行版,我们需要了解的一切

在选择Python语言进行软件开发时,我们面对的实际是一套大型语言生态系统——其中包含各类涵盖无数编程需求的软件包。但除了从GUI开发到机器学习的各类库之外,各位还能够从多种Python运行时中作出选择——其中部分运行时也许更适合您当前的用例条件。

下面,我们将简单介绍目前最常用的几款Python发行版——从标准实现(CPython)到针对速度进行优化的版本(PyPy),再到特殊用例(Anaconda、ActivePython)乃至最初为完全不同的其他语言设计的运行时(Jython、IronPython)。

目录

CPython

Anaconda Python

ActivePython

PyPy

Jython

一、CPython

CPython属于Python参考实现方案,可算是所有其他Python衍生发行版的一套标准化版本。CPython利用C语言编写而成,而其编写者包含多位Python语言顶级决策层中的核心人员。

1.CPython用例

CPython属于Python的参考实现版本,因为其在优化方面表现得最为保守。当然,这并不是缺点,而是设计取向。Python的维护者们希望将CPython打造为Python最具广泛兼容性与标准化的实现方案。

CPython最适合对Python标准的兼容性与一致性要求较高的用户。此外,CPython同样适用于希望以最基本方式使用Python并愿意为此放弃某些便捷性的专业人士。

举例来说,您需要进行些许调整才能利用CPython设置虚拟环境。而其他发行版(Anaconda)则在工作区设置中提供更多自动化功能。

2.CPython的局限性

CPython并不像Python的其他版本那样对性能作出深度优化。其不提供原生JIT(即时)编译器,不提供加速数学库,也没有用于提升性能的第三方附加选项。

您当然可以根据需求自行添加,但其并不直接提供绑定包。当然,这一切都是设计取向所决定,旨在确保CPython作为一套参考实现版本能够最大程度实现兼容性与标准化。而性能优化——开发人员可以选择其他配合工具包进行添加。

此外,CPython仅提供一组用于使用Python的基准性工具。举例来说,pip软件包管理器会从Python原生PyPI软件包库当中获取并安装各软件包。如果开发者允许,Pip甚至可以安装经过预编译的二进制文件(通过轮盘发布格式),但无法安装PyPI所不包含的任何其他软件包依赖项。

二、Anaconda Python

Anaconda源自Anaconda公司之手(原名为Continuum Analytics),其设计目标在于服务那些需要由商业供应商提供支持且具备企业支持服务的Python开发者。Anaconda Python的主要用例包括数学、统计学、工程、数据分析、机器学习以及其他相关应用。

1.Anaconda Python用例

Anaconda捆绑有Python商业与科学使用场景当中的各类常用库——包括SciPy、NumPy以及Numba等等,同时通过一套定制化软件包管理系统提供更多库访问能力。

Anaconda最为出色的特性在于将上述元素进行了高效组合。在安装之后,Anaconda提供桌面应用程序Anaconda Navigator,可通过方便的GUI帮助用户使用Anaconda环境中的各类功能。相较于CPython,Anaconda当中的组件搜索、更新以及使用流程都更为简便。

其另一大优势,在于Anaconda能够根据特定软件包的需求处理Python生态系统之外的组件。其中专门为Anaconda打造的conda软件包管理器能够根据外部软件要求安装Python以及第三方软件包。

2.Anaconda Python的局限性

由于Anaconda当中包含大量实用性库,且只需要简单操作即可安装更多库,因此Anaconda的安装体积往往要比CPython大得多。基本CPython安装运行大约需要100 MB空间,而Anaconda则会很快增长至GB级别。如果您的资源有限,那么这有可能产生问题。

帮助Anaconda瘦身的方法之一在于安装Miniconda,这是一套精简版本的Anaconda,其中只包含启动与运行所必需的部分。如果必要,您可以将软件包添加到Miniconda当中,并关注各软件包具体要消耗多少空间。

三、ActivePython

与Anaconda类似,ActivePython同样由营利性企业创建及维护——ActiveState公司。该公司还在销售多种语言运行时以及多语言Komodo IDE。

1.ActivePython用例

ActivePython主要面向企业用户与数据科学家——即希望使用Python语言,但又不愿把大量精力浪费在Python的组装与管理方面。ActivePython使用Python中的常规pip软件包管理器,但同时亦以认证压缩包的形式提供数百套通用库,外加英特尔数学核心库等其他一些具有第三方依赖关系的公共库。

2.ActivePython的局限性

ActivePython对软件包外部依赖关系的处理方式存在一大潜在缺点。如果大家希望将现有项目(例如TensorFlow)升级至具有复杂依赖关系的较新版本,则需要同时升级ActivePython。如果开发工作在与特定版本的项目相关联的环境中进行,那么这并不会造成影响。但目前的开发工作往往需要紧跟前沿版本的发布,在这种情况下大家往往会遇到很多麻烦。

四、PyPy

PyPy 属于CPython解释器的替代品,其利用即时(JIT)编译以加速Python程序的执行。根据实际执行的任务情况,其性能提升可能非常显著。

1.PyPy用例

人们对于Python——特别是CPython的抱怨之声,主要围绕其速度表现展开。在默认情况下,Python的运行速度远不及C语言——差距甚至可能达到数百倍。PyPy JIT将Python代码编译为机器语言,从而带来平均7.7倍于CPython的运行速度。在某些特定任务中,其提速效果能够达到50倍。

更重要的是,开发人员能够较为轻松地享受到这些便利。将CPython换成PyPy,您就基本完成了提速工作。

2.PyPy的局限性

PyPy一般更适用于处理“纯”Python应用程序。由于PyPy会模拟CPYthon的原生二进制接口,因此在处理NumPy等包含C库接口的Python软件包时,其表现并不理想。不过随着时间推移,PyPy的开发者们已经逐步解决了这个问题,并使得PyPy能够更好地同依赖于C扩展的Python软件包进行兼容。但必须承认,虽然已经有所改善,PyPy对C扩展的支持仍然有限。

阅读延展

1
3